[https://docs.dask.org/en/stable/ Dask] est une bibliothèque polyvalente pour Python. Elle fournit des tableaux NumPy et des DataFrame Pandas permettant le calcul distribué en Python pur avec accès à la pile PyData.
=Installer le wheel =
La meilleure option est d'installer avec [https://pythonwheels.com/ Python wheels] comme suit :
::1. [[Utiliser_des_modules#Sous-commande_load|Chargez un module]] Python avec module load python.
::2. Créez et démarrez un [[Python/fr#Créer_et_utiliser_un_environnement_virtuel|environnement virtuel]].
::3. Dans l'environnement virtuel, utilisez pip install
pour installer dask
et en option dask-distributed
.
:{{Command|prompt=(venv) [name@server ~]|pip install --no-index dask distributed }}
=Soumettre une tâche=
== Nœud simple ==
L’exemple suivant démarre une grappe Dask avec un nœud simple de 6 CPU et calcule la moyenne d’une colonne pour l'ensemble des données.
{{File
|name=dask-example.sh
|lang="bash"
|contents=
#!/bin/bash
#SBATCH --account=
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=6
#SBATCH --mem=8000M
#SBATCH --time=0-00:05
#SBATCH --output=%N-%j.out
module load python gcc arrow
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install dask distributed pandas --no-index
source $SLURM_TMPDIR/env/bin/activate
export DASK_SCHEDULER_ADDR=$(hostname)
export DASK_SCHEDULER_PORT= $((30000 + $RANDOM % 10000))
dask scheduler --host $DASK_SCHEDULER_ADDR --port $DASK_SCHEDULER_PORT &
dask worker "tcp://$DASK_SCHEDULER_ADDR:$DASK_SCHEDULER_PORT" --no-dashboard --nworkers=6 \
--nthreads=1 --local-directory=$SLURM_TMPDIR &
sleep 10
python dask-example.py
}}
Ce script démarre une grappe Dask ayant autant de processus de travail que de coeurs dans la tâche. Chacun des processus crée au moins un fil d’exécution. Pour déterminer le nombre de processus et de fils, consultez [https://distributed.dask.org/en/stable/efficiency.html?highlight=workers%20threads#adjust-between-threads-and-processes la documentation officielle de Dask]. Ici, le dataframe Pandas est divisé en 6 parts et chaque processus en traitera une avec un CPU
{{File
|name=dask-example.py
|lang="python"
|contents=
import pandas as pd
from dask import dataframe as dd
from dask.distributed import Client
import os
n_workers = int(os.environ['SLURM_CPUS_PER_TASK'])
client = Client(f"tcp://{os.environ['DASK_SCHEDULER_ADDR']}:{os.environ['DASK_SCHEDULER_PORT']}")
index = pd.date_range("2021-09-01", periods=2400, freq="1H")
df = pd.DataFrame({"a": np.arange(2400)}, index=index)
ddf = dd.from_pandas(df, npartitions=n_workers) # split the pandas data frame into "n_workers" chunks
result = ddf.a.mean().compute()
print(f"The mean is {result}")
}}
== Plusieurs nœuds ==
Dans le prochain exemple, nous reprenons l'exemple du nœud simple, mais cette fois avec une grappe Dask de deux nœuds comportant 6 CPU chacun. Nous créons aussi deux processus par nœud comportant trois cœurs chacun.
{{File
|name=dask-example.sh
|lang="bash"
|contents=
#!/bin/bash
#SBATCH --nodes 2
#SBATCH --tasks-per-node=2
#SBATCH --mem=16000M
#SBATCH --cpus-per-task=3
#SBATCH --time=0-00:30
#SBATCH --output=%N-%j.out
#SBATCH --account=
module add python arrow
export DASK_SCHEDULER_ADDR=$(hostname)
export DASK_SCHEDULER_PORT=34567
srun -N 2 -n 2 config_virtualenv.sh # set both -N and -n to the number of nodes
source $SLURM_TMPDIR/env/bin/activate
dask scheduler --host $DASK_SCHEDULER_ADDR --port $DASK_SCHEDULER_PORT &
sleep 10
srun launch_dask_workers.sh &
dask_cluster_pid=$!
sleep 10
python test_dask.py
kill $dask_cluster_pid # shut down Dask workers after the python process exits
}}
où le script config_virtualenv.sh
est
{{File
|name=config_env.sh
|lang="bash"
|contents=
#!/bin/bash
echo "From node ${SLURM_NODEID}: installing virtualenv..."
module load python gcc arrow
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install --no-index dask[distributed,dataframe]
echo "Done installing virtualenv!"
deactivate
}}
et le script launch_dask_workers.sh
est
{{File
|name=launch_dask_workers.sh
|lang="bash"
|contents=
#!/bin/bash
source $SLURM_TMPDIR/env/bin/activate
SCHEDULER_CONNECTION_STRING="tcp://$DASK_SCHEDULER_ADDR:$DASK_SCHEDULER_PORT"
if [[ "$SLURM_PROCID" -eq "0" ]]; then
## On the SLURM task with Rank 0, where the Dask scheduler process has already been launched, we launch a smaller worker,
## with 40% of the job's memory and we subtract one core from the task to leave it for the scheduler.
DASK_WORKER_MEM=0.4
DASK_WORKER_THREADS=$(($SLURM_CPUS_PER_TASK-1))
else
## On all other SLURM tasks, each worker gets half of the job's allocated memory and all the cores allocated to its task.
DASK_WORKER_MEM=0.5
DASK_WORKER_THREADS=$SLURM_CPUS_PER_TASK
fi
dask worker "tcp://$DASK_SCHEDULER_ADDR:$DASK_SCHEDULER_PORT" --no-dashboard --nworkers=1 \
--nthreads=$DASK_WORKER_THREADS --memory-limit=$DASK_WORKER_MEM --local-directory=$SLURM_TMPDIR
sleep 5
echo "dask worker started!"
}}
Enfin, le script test_dask.py
est
{{File
|name=test_dask.py
|lang="python"
|contents=
import pandas as pd
import numpy as np
from dask import dataframe as dd
from dask.distributed import Client
import os
client = Client(f"tcp://{os.environ['DASK_SCHEDULER_ADDR']}:{os.environ['DASK_SCHEDULER_PORT']}")
index = pd.date_range("2021-09-01", periods=2400, freq="1H")
df = pd.DataFrame({"a": np.arange(2400)}, index=index)
ddf = dd.from_pandas(df, npartitions=6)
result = ddf.a.mean().compute()
print(f"The mean is {result}")
}}