[https://docs.dask.org/en/stable/ Dask] is a flexible library for parallel computing in Python. It provides distributed NumPy array and Pandas DataFrame objects, as well as enabling distributed computing in pure Python with access to the PyData stack.
=Installing our wheel=
The preferred option is to install it using our provided Python [https://pythonwheels.com/ wheel] as follows:
:1. Load a Python [[Utiliser_des_modules/en#Sub-command_load|module]], thus module load python/3.11
:2. Create and start a [[Python#Creating_and_using_a_virtual_environment|virtual environment]].
:3. Install dask, and optionally dask-distributed in the virtual environment with pip install
.
:{{Command|prompt=(venv) [name@server ~]|pip install --no-index dask distributed }}
=Job submission=
== Single node ==
Below is an example of a job that spawns a single-node Dask cluster with 6 cpus and computes the mean of a column of a parallelized dataframe.
{{File
|name=dask-example.sh
|lang="bash"
|contents=
#!/bin/bash
#SBATCH --account=
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=6
#SBATCH --mem=8000M
#SBATCH --time=0-00:05
#SBATCH --output=%N-%j.out
module load python gcc arrow
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install dask distributed pandas --no-index
source $SLURM_TMPDIR/env/bin/activate
export DASK_SCHEDULER_ADDR=$(hostname)
export DASK_SCHEDULER_PORT= $((30000 + $RANDOM % 10000))
dask scheduler --host $DASK_SCHEDULER_ADDR --port $DASK_SCHEDULER_PORT &
dask worker "tcp://$DASK_SCHEDULER_ADDR:$DASK_SCHEDULER_PORT" --no-dashboard --nworkers=6 \
--nthreads=1 --local-directory=$SLURM_TMPDIR &
sleep 10
python dask-example.py
}}
In the script Dask-example.py, we launch a Dask cluster with as many worker processes as there are cores in our job. This means each worker will spawn at most one CPU thread. For a complete discussion of how to reason about the number of worker processes and the number of threads per worker, see the [https://distributed.dask.org/en/stable/efficiency.html?highlight=workers%20threads#adjust-between-threads-and-processes official Dask documentation]. In this example, we split a pandas data frame into 6 chunks, so each worker will process a part of the data frame using one CPU:
{{File
|name=dask-example.py
|lang="python"
|contents=
import pandas as pd
from dask import dataframe as dd
from dask.distributed import Client
import os
n_workers = int(os.environ['SLURM_CPUS_PER_TASK'])
client = Client(f"tcp://{os.environ['DASK_SCHEDULER_ADDR']}:{os.environ['DASK_SCHEDULER_PORT']}")
index = pd.date_range("2021-09-01", periods=2400, freq="1H")
df = pd.DataFrame({"a": np.arange(2400)}, index=index)
ddf = dd.from_pandas(df, npartitions=n_workers) # split the pandas data frame into "n_workers" chunks
result = ddf.a.mean().compute()
print(f"The mean is {result}")
}}
== Multiple nodes ==
In the example that follows, we reproduce the single-node example, but this time with a two-node Dask cluster, with 6 CPUs on each node. This time we also spawn 2 workers per node, each with 3 cores.
{{File
|name=dask-example.sh
|lang="bash"
|contents=
#!/bin/bash
#SBATCH --nodes 2
#SBATCH --tasks-per-node=2
#SBATCH --mem=16000M
#SBATCH --cpus-per-task=3
#SBATCH --time=0-00:30
#SBATCH --output=%N-%j.out
#SBATCH --account=
module add python arrow
export DASK_SCHEDULER_ADDR=$(hostname)
export DASK_SCHEDULER_PORT=34567
srun -N 2 -n 2 config_virtualenv.sh # set both -N and -n to the number of nodes
source $SLURM_TMPDIR/env/bin/activate
dask scheduler --host $DASK_SCHEDULER_ADDR --port $DASK_SCHEDULER_PORT &
sleep 10
srun launch_dask_workers.sh &
dask_cluster_pid=$!
sleep 10
python test_dask.py
kill $dask_cluster_pid # shut down Dask workers after the python process exits
}}
Where the script config_virtualenv.sh
is:
{{File
|name=config_env.sh
|lang="bash"
|contents=
#!/bin/bash
echo "From node ${SLURM_NODEID}: installing virtualenv..."
module load python gcc arrow
virtualenv --no-download $SLURM_TMPDIR/env
source $SLURM_TMPDIR/env/bin/activate
pip install --no-index dask[distributed,dataframe]
echo "Done installing virtualenv!"
deactivate
}}
And the script launch_dask_workers.sh
is:
{{File
|name=launch_dask_workers.sh
|lang="bash"
|contents=
#!/bin/bash
source $SLURM_TMPDIR/env/bin/activate
SCHEDULER_CONNECTION_STRING="tcp://$DASK_SCHEDULER_ADDR:$DASK_SCHEDULER_PORT"
if [[ "$SLURM_PROCID" -eq "0" ]]; then
## On the SLURM task with Rank 0, where the Dask scheduler process has already been launched, we launch a smaller worker,
## with 40% of the job's memory and we subtract one core from the task to leave it for the scheduler.
DASK_WORKER_MEM=0.4
DASK_WORKER_THREADS=$(($SLURM_CPUS_PER_TASK-1))
else
## On all other SLURM tasks, each worker gets half of the job's allocated memory and all the cores allocated to its task.
DASK_WORKER_MEM=0.5
DASK_WORKER_THREADS=$SLURM_CPUS_PER_TASK
fi
dask worker "tcp://$DASK_SCHEDULER_ADDR:$DASK_SCHEDULER_PORT" --no-dashboard --nworkers=1 \
--nthreads=$DASK_WORKER_THREADS --memory-limit=$DASK_WORKER_MEM --local-directory=$SLURM_TMPDIR
sleep 5
echo "dask worker started!"
}}
And, finally, the script test_dask.py
is:
{{File
|name=test_dask.py
|lang="python"
|contents=
import pandas as pd
import numpy as np
from dask import dataframe as dd
from dask.distributed import Client
import os
client = Client(f"tcp://{os.environ['DASK_SCHEDULER_ADDR']}:{os.environ['DASK_SCHEDULER_PORT']}")
index = pd.date_range("2021-09-01", periods=2400, freq="1H")
df = pd.DataFrame({"a": np.arange(2400)}, index=index)
ddf = dd.from_pandas(df, npartitions=6)
result = ddf.a.mean().compute()
print(f"The mean is {result}")
}}